Ghimire, K., Chen, Q., Feng, X. (2022). Head and Neck Tumor Segmentation
with Deeply-Supervised 3D UNet and Progression-Free Survival Prediction with
Linear Model. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A.
(eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021.
Lecture Notes in Computer Science, 13209. Springer, Cham.
https://doi.org/10.1007/978-3-030-98253-9_13
Duan, J., Bernard, M., Downes, L., Willows, B., Feng, X., Mourad, W. F., St Clair, W.,
Chen, Q. (2022). Evaluating the clinical acceptability of deep learning contours of
prostate and organs-at-risk in an automated prostate treatment planning process.
Medical physics, 49(4), 2570–2581.
https://doi.org/10.1002/mp.15525
Castle, J. R., Duan, J., Feng, X., Chen, Q. (2022). Development of a virtual
source model for Monte Carlo‐based independent dose calculation for varian linac.
Journal of Applied Clinical Medical Physics, e13556.
https://doi.org/10.1002/acm2.13556
Feng, X., Chen, Q. (2021). Organ-Specific Segmentation Versus Multi-Class
Segmentation Using U-Net. Auto-Segmentation for Radiation Oncology,
CRC Press 125-132.
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429323782-11/
Ghimire, K., Chen, Q., Feng, X. (2021). Patch-Based 3D UNet for Head and Neck
Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions.
In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds) Head and Neck Tumor
Segmentation. HECKTOR 2020. Lecture Notes in Computer Science, 12603.
Springer, Cham.
https://doi.org/10.1007/978-3-030-67194-5_9
Chen, W., Li, Y., Dyer, B.A. et al. Deep learning vs. atlas-based models for fast
auto-segmentation of the masticatory muscles on head and neck CT images.
Radiat Oncol 15, 176 (2020).
https://doi.org/10.1186/s13014-020-01617-0
Feng, X., Tustison, N. J., Patel, S. H., Meyer, C. H. (2020). Brain tumor segmentation
using an ensemble of 3d u-nets and overall survival prediction using radiomic features.
Frontiers in computational neuroscience, 14, 25.
https://doi.org/10.3389/fncom.2020.00025
Feng, X., Bernard, M. E., Hunter, T., Chen, Q. (2020). Improving accuracy and robustness of
deep convolutional neural network based thoracic OAR segmentation. Physics in Medicine &
Biology, 65(7), 07NT01.
https://doi.org/10.1088/1361-6560/ab7877
Feng, X., Qing, K., Tustison, N. J., Meyer, C. H., Chen, Q. (2019). Deep convolutional neural
network for segmentation of thoracic organs‐at‐risk using cropped 3D images. Medical physics,
46(5), 2169-2180.
https://doi.org/10.1002/mp.13466
Yang, J., Veeraraghavan, H., Armato III, S. G., Farahani, K., Kirby, J. S., Kalpathy‐Kramer, J.,
et al. (2018). Autosegmentation for thoracic radiation treatment planning: a grand challenge at
AAPM 2017. Medical physics, 45(10), 4568-4581.
https://doi.org/10.1002/mp.13141
Handsfield, L. L., Jones, R., Wilson, D. D., Siebers, J. V., Read, P. W.,
Chen, Q. (2014). Phantomless patient‐specific TomoTherapy QA via delivery
performance monitoring and a secondary Monte Carlo dose calculation.
Medical physics, 41(10), 101703.
https://doi.org/10.1118/1.4894721
Yuan, J., Rong, Y., Chen, Q. (2015). A virtual source model for Monte Carlo simulation
of helical tomotherapy. Journal of Applied Clinical Medical Physics, 16(1), 69-85.
https://doi.org/10.1120/jacmp.v16i1.4992
Yuan, J., Chen, Q., Brindle, J., Zheng, Y., Lo, S., Sohn, J., Wessels, B. (2015).
Investigation of nonuniform dose voxel geometry in Monte Carlo calculations. Technology
in Cancer Research & Treatment, 14(4), 419-427.
https://doi.org/10.1177/1533034614547459
Chen, Q., Lu, W., Chen, Y., Chen, M., Henderson, D., Sterpin, E. (2012). Validation of GPU
based TomoTherapy dose calculation engine. Medical physics, 39(4), 1877-1886.
https://doi.org/10.1118/1.3693057
Sterpin, E., Chen, Y., Chen, Q., Lu, W., Mackie, T. R., Vynckier, S. (2011). Monte Carlo‐based
simulation of dynamic jaws tomotherapy. Medical physics, 38(9), 5230-5238.
https://doi.org/10.1118/1.3626486